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Abstract

It is shown that in the formalism of quantum mechanics on phase space with a
purely quantum mechanical theory of measurement, Bloch’s paradox does not
appear.
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1. Introduction

Bloch’s paradox [2], introduced in 1967, stated: ‘But problems arise if one imposes two
requirements which seem to be quite orthodox: (1) that every particle has, at a given space-
time point, a unique wave function, whether pure state or mixture, which transforms under
an irreducible representation of the Lorentz group—or at least each pure state entering the
mixture must transform thus; (2) that one and only one component of the mixture in a case
like ours is the wave function of S [the state of the system being measured] after interaction’.
It was named by G Fleming [5]. The paradox may be rephrased as follows1.

An event occurs in a box in configuration space and time centered at the point (
−→
x , t) in

relativistic spacetime in one Lorentz frame. In another frame, it occurs in a box centered at
the point (

−→
x ′, t ′). There are an infinite set of frames. So, when exactly does the event occur?

This is exemplified by defining the ‘event’ to be the ‘collapse’ of the wavefunction of a
particle by its position being measured in a box. Assuming the ‘postulate of instantaneous
reduction’, one then says that for a collapse centered at (

−→
x , t), the collapse occurs at time t.

We will always assume that collapse occurs with instantaneous reduction, here. Consequently,
one may restate Bloch’s paradox one of two ways: ‘If, in some Lorentz frame, an observable
is measured at an instant, then what does the measurement look like in a different frame?’ or
‘If, in some Lorentz frame, an observable is measured and the state of the system reduces by
a projection, then what does the system look like in a different frame?’

1 The following three paragraphs are a bit vague, but they reflect what I presume is the intent of the original authors.

1751-8113/09/155301+10$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/15/155301
http://stacks.iop.org/JPhysA/42/155301


J. Phys. A: Math. Theor. 42 (2009) 155301 F E Schroeck Jr

Aharonov and Albert [1] have discussed this for a massive spinless particle. There, a
particle may be in one of three boxes, Xi, i ∈ {1, 2, 3}. At time t1 a measurement is made in
X1 and it is found that the particle is not there. The points in (X1, t1) and (X2, t2) are separated
by a spacelike interval. A Lorentz observer wizzes by for which the events in (X1, t1) precede
those in (X2, t2). Assuming that ‘measurements in spacelike-separated regions’ necessarily
commute, they derive that the wavefunction between t1 and t2 is roughly N(|X2〉 + |X3〉), N
a normalization constant, and where |Xi〉 represents the wavefunction of the particle in Xi at
time ti , suitably shifted in time so that they may be added. Another observer whips by so that
t2 preceds t1, the particle is not observed to be in (X2, t2), and the observer deduces that the
particle in the time between t1 and t2 is in the wavefunction N ′(|X1〉 + |X3〉). That is, the state
determined by these two state histories are drastically different! They are so different that they
are not relativistic transformations of each other.

See [13] for a review of various authors’ examples of different aspects of Bloch’s paradox.
We will use the following definitions of ‘measurement’, ‘measurement operator’, etc. in

Hilbert space H in what follows:
A state on H is any operator ρ that is self-adjoint, positive, of trace class with T r(ρ) = 1.

An observable is a self-adjoint operator on H (that may have some other properties to make it
‘observable’). Let ρ be a state on H, and A an observable. Then an experimental apparatus
designed to ‘measure’ A will, on a given input state ρ, give a real number. In general the
numbers so generated upon repeated measurement of ρ will form a probability distribution.
T r(ρA) is the expected value of A in state ρ of this distribution. If we vary ρ, we may deduce
A from these numbers T r(ρA). A is the measurement operator for this experiment. Any
self-adjoint operator has a spectral measure associated with it and a spectrum in the reals, or
in R

n. If Pψ denotes the state that is the projection onto the normalized vector ψ ∈ H, then
the transition probability from state Pψ to state Pϕ is just T r(PψPϕ) = |〈ψ, ϕ〉|2 where 〈·, ·〉
is the inner product on the Hilbert space H. If one chooses H to describe quantum particles,
then the vectors in H all have dispersions in their momentum,

−→
p , and position,

−→
q , variables

since H is a vector space of functions that are square integrable over some manifold in
−→
p

and/or
−→
q ; there are no eigenvectors of either

−→
p or

−→
q .

A measurement operator in a box � in the spectrum of A may be taken as the spectral
projection onto the (Borel) set �. If A is the position operator and one works in a representation
in which the functions ψ ∈ H are functions of the position, then one may rephrase ‘the semi-
classical measurement in box � at time t of state given by ψ with positive outcome’ to imply
ψ(

−→
x , t+) = 0 if

−→
x /∈ �, t+ = limε→0,ε>0(t + ε). This is a statement in the ‘individual’ or

‘collapse’ formalism rather than the statistical formalism of the previous paragraph.
Alternatively, the measurement of state ρ may be the accumulated sum of the transition

probabilities to states φ for which the T r(φA) is contained in �. This alternative definition is
closer to the experimental situation. For example, begin with ρ and ask where it appears on a
screen composed of certain sites for potential capturing of ρ. Here one may make at most a
conditional (statistical) probability distribution for the state of the system after the experiment
has been performed.

These two definitions will be termed here the ‘semi-classical’ (for lack of a better phrase)
and the ‘quantum’ measurement, respectively.

Now, there are some additional unstated assumptions in the first four paragraphs
above:

(i) the ‘event’ or ‘collapse’ actually is thought to occur (or fails to occur) in a box centered
at a point in spacetime;

(ii) a measurement in any of these respective boxes with an outcome other than ‘it is not there’
causes the wavefunction to collapse to the wavefunction in the corresponding box(es);
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(iii) you have a localized theory of measurement;
(iv) you can take localized measurements in space-like separated regions.

We make several remarks about these unstated assumptions:
(i.1) One has taken ‘measurement’ as a semi-classical measurement on the classical

spacetime (the (Xi, ti)) and not as a quantum mechanical interaction between two quantum
mechanical objects.

(i.2) The fact that one takes (
−→
x , t) as a point in Lorentz/Minkowski space that is associated

with (X, t) of an event, when viewed in a different frame, will have the corresponding time
component spread out. From this point of view, there seems to be no way that one can have
instantaneous reduction consistent with Lorentz/Poincaré invariance.

(i.3) Given that one ‘measures’ a wavefunction by taking an inner product with a known
wavefunction, and as quantum mechanical objects have a spread, one may be unable to claim
that the collapse, if a collapse occurs at all, ‘occurs in a box’ unless it is known somehow
that the wavefunction of the test particle is compactly supported in the box. Similarly for
non-occurrance.

(i.4) Why in spacetime? One may take the spacetime and enlarge it to a phase spacetime
(including spin if necessary). Then one may project it back to configuration spacetime by
marginality, if desired. For this to make sense, the measurement operator is taken as a function
over phase space and, by marginality, it may be restricted back to configuration space. (More
on this later. But this will require that one has a Poincaré invariant theory of measurement
in phase space.) That these measurement operators are positive operators and not projections
will be seen. Again, one may be lacking any notion of a support in a compact set for the
measurement operator.

(ii) Measurement in a box gives a form of von Neumann’s collapse postulate. But the
collapse postulate is based on the operator-being-measured having a purely discrete spectrum.
For operators with purely continuous spectrum, such as the position or momentum operators,
von Neumann [12] is silent. Ozawa has shown [7] that in that case the measurement operator
cannot be described by a projection operator. It will be shown that in a Poincaré invariant
theory of measurement in phase space, only a non-localized description is present and will be
such that the von Neumann collapse postulate no longer holds. Furthermore, since the von
Neumann collapse postulate is equivalent to the repeatability of a measurement ‘immediately
after’ and giving the same result as the first measurement (a rare event in actuality), we
are tempted to replace that postulate with a weakened version of it in which we take the
projection operator which describes the measurement and replace it with a positive operator.
But even if we replace the projection with just a positive operator, then we do not know that the
measurement necessarily leads to a new state with a wavefunction in the box. However, if we
take either of these views of collapse, and if ρ is a density matrix (state) and our measurement
operator is M, a projection or a positive operator, then the state may convert to NM1/2ρM1/2,
where N is a normalization constant.

(iii) and (iv) Taking the view that a measurement is in fact a quantum measurement, and
that one has an ‘informationally complete set of measurements’, it will be shown that it is
impossible to have measurements in space-like separated regions. Furthermore, it will be
shown that the theory of quantum mechanics in phase space [9] gives rise to a theory in which
it is impossible to have measurements in space-like separated regions, although the quantum
expectation values of the testing wavefunctions are in space-like separated regions. All this
will be clarified and detailed in what follows. One has a purely non-localized theory that,
none-the-less, mimics all the physically verifiable properties predicted by quantum mechanics.
The theory that evolves in the following sections is, in fact, another formulation of the theory
of quantum mechanics in phase space.
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2. A quantum mechanical theory of measurement

One starts with a canonical Hilbert space, H, describing a particle. Suppose that one wishes to
test whether a particle in a vector state Pψ with vector ψ ∈ H appears in fact ‘at

−→
x at time t’.

(Pψ is a one-dimensional projection of H onto the vector ψ .) How can one do this? Well, one
could have a potential vector state with wavefunction η and placed so that it has a quantum
expectation value at

−→
x at time t. Since quantum states are objects that have dispersion, taking

the quantum expectation value to be at
−→
x is the best one can do! Then one may compute the

transition probability of ψ with η to ‘measure the ψ ′. Recall that the transition probability of
ψ with η is just |〈ψ, η〉|2, where 〈·, ·〉 is the inner product in H.

Note that one has no way of measuring ‘strictly locally’ since η is not a point mass.
But, you say, it never was claimed that one could measure to get a particle exactly at

−→
x at

time t. It would suffice to have η having a support in a (Borel) set �, η square integrable,
normalized, and expectation value

−→
x ∈ �. One has just converted from ‘measurement at−→

x at time t’ to a ‘localized’ measurement within � at time t, with the quantum expectation
value with respect to η at

−→
x ∈ �. Next, suppose that the support of η is much smaller than

�. One could translate η within the (Borel) set �, with the translation operator U(
−→
y ) to

obtain |〈ψ,U(
−→
y )η〉|2. Then U(

−→
y )η has expectation value

−→
x +

−→
y , which is taken to be still

in �. Take the integral over � of these transition probabilities as a function of
−→
y and one

will have the transition probability corresponding to a measurement in �. But what about
when U(

−→
y )η is very near the boundary of �? If ‘very near’ means closer than the dispersion

of η, then there is a bit of the wavefunction ψ that can overlap with U(
−→
y )η even though ψ

remains outside of �, and even supposing that ψ and η are of compact support. Thus, one
is left with a description of � quantum mechanically as a sort of fuzzy set function with the
fuzziness caused by the dispersion of η. Now, we shall see that to describe an experiment
having informational completeness (to be described below), η will necessarily have to have
〈U(

−→
y )η, η〉 nonzero for all

−→
y ! In other words, there is no theory of localized measurement

at all. In fact, taking localized measurements in two spacelike-separated regions is precluded
from the start. We still have the quantum expectations may be spacelike separated, however.

Before we leave this theory of measurement given in the first paragraph in this section,
we should say that we have here the beginning of the solution to Bloch’s paradox. Because
the vectors are in H where H is an irreducible representation space for which the Poincaré
group is unitarily presented, and presuming one has measured a state Pψ by means of having
it transist to state Pη, then upon switching to another frame by U ∈ P, one gets the transition
probability to be

T r(PUψPUη) = |〈Uψ,Uη〉|2 = |〈ψ, η〉|2 = T r(PψPη); (2.1)

i.e., the same transition probability with which one started.
All the details of the phase space formulation of relativistic quantum mechanics will now

be worked out. One starts with the Poincaré (a.k.a. the inhomogeneous Lorentz) group and
asks what are the phase (a.k.a. symplectic) spaces on which the Poincaré group acts. By a
theorem of Guillemin and Sternberg [6], every one of these phase spaces may be found as
a (union over) certain homogeneous space(s) of the Poincaré group; i.e. as P/H , where H
is a closed subgroup of the Poincaré group, P . Set 	 = P/H . The details of this H are
not important for us here, and it is suggested that the reader refers either to [6] or to [9].
However, one takes the space to be a representation space that describes either a massive
spinning particle or a massive, spin zero particle. It works out that, 	 = {(−→p ,

−→
q ,R)}, with−→

p = the momentum,
−→
q = the position and R = the rotation of spin, or 	 = {(−→p ,

−→
q )} in

the spin zero case. (Henceforth we will take the notation of a representation with spin.) On

4



J. Phys. A: Math. Theor. 42 (2009) 155301 F E Schroeck Jr

	, we may represent P by g : x �→ gx, g ∈ P, x ∈ 	, as 	 is a homogeneous space of P .
One takes σ : 	 = P/H → P, x �→ σ(x), as a choice function (which may even be chosen
to be continuous).

One [9] then takes the Hilbert space of complex-valued, square-integrable functions
on 	, L2(	, μ), with μ equal to the P-left-invariant measure over the phase space 	.
On L2(	, μ), one may represent P by [V (g)�](x) = �(g−1x), g ∈ P (or perhaps as
a projective representation). V is unitary. On this space, one may consider the set of
operators, {A(f )} given by multiplication by (measurable) functions f of the phase space
variables. These multiplication operators are covariant under the action of the group P:
V (g)A(f )V (g)−1 = A(g.f ), g.f (x) = f (g−1x).

One also has a canonical Hilbert space, H, describing a particle with momentum, position,
mass and spin; i.e., an irreducible representation space for the Poincaré group for a massive,
spinning particle. These representation spaces are the well-known quantum mechanical
representation spaces. One labels the unitary, irreducible representation of P on H by U.
Now, picking a normalized η ∈ H, then

[Wηφ](x) ≡ 〈U(σ(x))η, φ〉, φ ∈ H, x ∈ 	 (2.2)

defines Wηφ as a function on 	. With certain conditions [9] on η, this Wη is a unitary map
from H to a closed subspace of L2(	, μ). In particular, in order for {U(σ(x))η, x ∈ 	} to be
extended to {U(g)η|g ∈ P}, η must satisfy

(i): U(h)η = α(h)η, h ∈ H (2.3)

such that α is a one-dimensional representation (or character) of H. Moreover, if

(ii):
∫

	

|〈U(σ(x))η, η〉|2 dμ(x) < ∞, (2.4)

then one has a situation in which one may reproduce the Hilbert space structure of any ψ ∈ H
by means of the complex-valued functions on phase space 〈U(σ(x))η, ψ〉; i.e., we have a
coherent state representation with {U(σ(x))η : x ∈ 	} as an overcomplete basis of H.

Having complex-valued functions rather than vector-valued functions with vectors in
C

n, n having to do with the spin, is remarkable in the case of nonzero spin! [9, page 325].
Another ramification of this representation scheme is that one may enlarge the description
of H as saying that the vectors in H have dispersions in their positions, momenta, and spin
variables. This plays no role in the present paper.

Condition (ii) is the ‘admissibility’ or ‘square-integrability’ condition, and (i) and (ii) are
called ‘α-admissibility’. It is found that (i) and (ii) are necessary and sufficient conditions
for obtaining a representation of P on 	. All the physically relevant irreducible unitary
representations in quantum mechanics behave in this way2. (See α-admissibility in [9].) With
these two conditions on η, one obtains that Wη maps H to a closed subspace in L2(	, μ) and
intertwines the representations U and V : WηU(g) = V (g)Wη, g ∈ P .3

Let P η be the projection from L2(	, μ) to the subspace of L2(	, μ) so obtained. Then
one ‘pulls back’ the operators A(f ) on L2(	, μ) to operators Aη(f ) on H:

Aη(f ) ≡ [Wη]−1P ηA(f )Wη. (2.5)

These operators form a set satisfying the ordinary canonical commutation relations, etc. (Aη(f )

when expanded in the operators for momentum, position, and spin have η appearing only in
terms of moments of η.)

2 We take the ‘continuous spin representations’ as being non-physical.
3 The conditions (i) and (ii) also yield the so-called ‘orthogonality conditions’ which we shall not use here. See
[9, III.1.O].
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If f is a function with compact support, then Aη(f ) is a bounded operator. Furthermore,

taking η to have quantum expectation values of momentum = −→
0 , of position = −→

0 , and of
spin = −→

s0 , and for x = (
−→
p ,

−→
q ,R), where

−→
p = boost ∈ R

3,
−→
q = translation ∈ R

3, and R =
rotation, we obtain the quantum expectation values for U(σ(x))η of

−→
p for momentum,−→

q for position, and R
−→
s0 for spin4. Thus, we may label ηp,q,R ≡ U(σ(

−→
p ,

−→
q ,R))η,

since (
−→
p ,

−→
q ,R

−→
s0 ) comprise the expectation values of (momentum, position, spin) for

U(σ(
−→
p ,

−→
q ,R))η.

Now, a tiny bit of computation will show that

Aη(f ) =
∫

	

f (x)T η(x) dμ(x)

=
∫

	

f (
−→
p ,

−→
q ,R)T η(

−→
p ,

−→
q ,R) dμ(

−→
p ,

−→
q ,R), (2.6)

where

T η(x) = U(σ(
−→
p ,

−→
q ,R))PηU(σ(

−→
p ,

−→
q ,R))† (2.7)

is the projection onto ηp,q,R ≡ U(σ(
−→
p ,

−→
q ,R))η. Thus, a measurement of Aη(f ) in a vector

state Pψ gives

T r(PψAη(f )) =
∫

	

f (
−→
p ,

−→
q ,R)|〈U(σ(

−→
p ,

−→
q ,R)η,ψ〉|2 dμ(

−→
p ,

−→
q ,R); (2.8)

i.e., the transition probability from ψ to U(σ(
−→
p ,

−→
q ,R))η integrated over f (

−→
p ,

−→
q ,R).

Taking f to be the characteristic function χ� of the set � is as close as one can get to a
projection onto �. (As will be seen, Aη(χ�) is not a projection!) One may replace χ� with
the fuzzy function f (0 � f � 1) to obtain a modest generalization. One says that Aη(f )

provides a measurement in fuzzy set f . Also, note that � is a set in phase space. To obtain
an operator ‘Aη(χ�′)’ with �′ a set in configuration space, one has to take � = X × �′ × �

where X is the entire momentum space and � is the entire spin space, and then ‘Aη(χ�′)’ =
Aη(χ�). This amounts to defining ‘Aη(χ�′)’ from Aη(χ�) by marginality. More generally, to
obtain an operator that depends only on any one variable, integrate out the remaining variables.
For a physical justification of having the full phase space in the variables of f , also see [9].

It is pointed out that measuring these Aη(f ) is the best one can do for the quantum
mechanical measurement of any density operator, including any vector state [4]. In this sense
measuring Aη(f ) s is optimal among all the operators that measure the probability of having
values in the (fuzzy) set f .

It is stressed that in addition, such measurements provide an informationally complete
set, unlike the measurement of just position or just momentum. This will be addressed in the
following section.

Next, given a density operator, ρ, one obtains the quantum probability

T r(ρAη(f )) =
∫

	

f (
−→
p ,

−→
q ,R)〈ηp,q,R, ρηp,q,R〉dμ(

−→
p ,

−→
q ,R). (2.9)

Taking ρ = |ψ〉〈ψ | = Pψ for some ψ ∈ H, ‖ ψ ‖= 1, one obtains

〈ηp,q,R, Pψηp,q,R〉 = |〈ηp,q,R, ψ〉|2, (2.10)

the transition probability from ψ to ηp,q,R . If ρ is a general density operator
∑

i ρiPψi
, {ψi}

an orthonormal basis, ρi ∈ R+,
∑

i ρi = 1, then 〈ηp,q,R, ρηp,q,R〉 is a convex combination of
transition probabilities. Consequently, the operator Aη(χ�) or Aη(f ) is physically motivated,

4 The cases of mass zero or spin zero are also treated similarly.
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and is a measurement operator for the transition to some state that has its expectation values
in the box described by χ� or the fuzzy box described by f .

Aη(f ) has the following additional properties [9]:
Property A: Aη(f ) is a non-local operator since one is measuring in (2.9) and (2.10) from

the expected values of
−→
p ,

−→
q and R

−→
s0 for ηp,q,R and taking the transition probability from ψ

to ηp,q,R in H.
Property B: For 0 � f � 1, f measurable, Aη(f ) is a positive operator that is not a

projection operator except in the extreme cases f ≡ 0 and f ≡ 1 [10], but is an ‘effect’:
0 � Aη(f ) � 1. This includes the case f = χ�, so that Aη(χ�) is not a projection operator
for � �= ∅ or 	 a.e.μ.

Property C: The set of Aη(f ) s is covariant with respect to the section of boosts,
translations and spin rotations. This may be seen from the left invariance of the measure
μ , the α-admissibility of η, and

U(σ(
−→
p ,

−→
q ,R))Aη(f )U(σ(

−→
p ,

−→
q ,R))†

=
∫

	

f (
−→
p ′,−→q ′, R′)U(σ(

−→
p ,

−→
q ,R))T η(

−→
p ′,−→q ′, R′)

×U(σ(
−→
p ,

−→
q ,R))† dμ(

−→
p ′,−→q ′, R′)

=
∫

	

f (
−→
p ′,−→q ′, R′)T η(σ (

−→
p ,

−→
q ,R) ◦ (

−→
p ′,−→q ′, R′)) dμ(

−→
p ′,−→q ′, R′)

=
∫

	

f (σ (
−→
p ,

−→
q ,R)−1 ◦ (

−→
p ′′,−→q ′′, R′′))T η(

−→
p ′′,−→q ′′, R′′) dμ(

−→
p ′′,−→q ′′, R′′)

= Aη(σ(
−→
p ,

−→
q ,R).f ), (2.11)

where

[σ(
−→
p ,

−→
q ,R).f ](

−→
p ′,−→q ′, R′) = f (σ(

−→
p ,

−→
q ,R)−1 ◦ (

−→
p ′,−→q ′, R′)) (2.12)

is a (left-regular) representation of the section of boosts, translations and spin changes on
functions of the group parameters. Similar results hold for a general Poincaré transformation.

Property D: T η(
−→
p ,

−→
q ,R) are not projections onto the point (

−→
p ,

−→
q ,R

−→
s0 ) as

T η(
−→
p ,

−→
q ,R)T η(

−→
p ′,−→q ′, R′) �= 0 for all (

−→
p ,

−→
q ,R) different from but near (

−→
p ′,−→q ′, R′).

In fact

T η(
−→
p ,

−→
q ,R)T η(

−→
p ′,−→q ′, R′) = 〈U(σ(

−→
p ,

−→
q ,R))η,U(σ(

−→
p ′,−→q ′, R′))η〉

× |U(σ(
−→
p ,

−→
q ,R))η〉〈U(σ(

−→
p ′,−→q ′, R′))η|, (2.13)

and

〈U(σ(
−→
p ,

−→
q ,R))η,U(σ(

−→
p ′,−→q ′, R′))η〉 �= 0 (2.14)

for at least (
−→
p ,

−→
q ,R) in a small neighborhood of (

−→
p ′,−→q ′, R′) by continuity of the

representation. Alternatively, if T η(
−→
p ,

−→
q ,R) were projections that formed an orthogonal

set, then we would have a nonseparable Hilbert space for H. But H is separable.
Now let dμ(

−→
p ,

−→
q ,R) = dλ(

−→
q ) dν(

−→
p ,R). Suppose f and h have marginal supports

in space-like separated regions; i.e., the marginal support

suppq(f ) ≡ supp

{∫∫
(p,R)

f (
−→
p ,

−→
q ,R) dν(

−→
p ,R)

}
(2.15)

is spacelike separated from a similar expression in h. Then, analogously to property D above,
one obtains

[Aη(f ),Aη(h)] �= 0 (2.16)
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for at least supp q(f ) near supp q(h). In the following section, one finds that [Aη(f ),Aη(h)] �=
0 for all f �= ch (almost everywhere), c a constant. Thus one derives that these measurements
‘in two space-like separated regions’ never commute! Consequently, this theory of quantum
measurements is non-local.

Finally, look at Bloch’s paradox when one makes the assumption that by a measurement in
a region � in one frame at time t, one means that one has a measurement operator Aη(χ�), and
when measuring a normalized vector state Pψ = |ψ〉〈ψ | in �, one will obtain the probability
〈ψ |Aη(χ�)|ψ〉 at time t. Let us look at this when one measures U(g)ψ, g ∈ P: one obtains
the probability

〈U(g)ψ |Aη(χ�)|U(g)ψ〉 = 〈ψ |U(g)†Aη(χ�)U(g)|ψ〉
= 〈ψ |Aη(g−1.χ�)|ψ〉, (2.17)

the probability of measurement at the corresponding Lorentz transformed set! Similarly for
measuring Aη(f ) on general state ρ.

There is no paradox of the character of Bloch’s in this quantum mechanical measurement
scheme because we are asking for the transition probabilities to be conserved between the
wavefunction of the particle being observed and the particles {ηp,q,R}. Bloch’s paradox
arises if one forgets the fact that one must transform both the particle wavefunction and the
wavefunction(s) with which the ‘event’ is taking place. Equivalently, Bloch’s paradox may
also be conceived as arising because you might have ‘ψ(x) = 〈x,ψ〉’ with x being a point
in configuration space and 〈x| denoting, improperly, a delta function at x. Then under the
Poincaré transformation g,ψ �→ U(g)ψ , and so ψ(x) would become [U(g)ψ](x). But being
a square-integrable function in x,ψ(x) has no meaning for any particular x! The view that
ψ(x) has meaning is a mixture of quantum mechanical theory (the ψ) and classical theory
(the x); so, is a semi-classical view (which is wrong).

Moreover, it is commonly thought that one may choose to work in just the configuration
space. Then one still would have properties A, B and D holding, with property C holding

for just U(σ(
−→
0 ,

−→
q , e)). But then one would not have U(g), for any g ∈ P appearing

in (2.11) but rather only U(σ(
−→
0 ,

−→
q , e)), which do not generate the entire Poincaré group

(and particularly the boosts) through U(σ(
−→
0 ,

−→
q , e))U(h), h ∈ H . Hence one obtains the

resulting loss of Poincaré covariance violating the usual set up of Bloch’s paradox.

3. Informational completeness of the set of Aη(f ) s

One would have a poor measurement scheme if a ‘complete’ set of measurements of a state
would not uniquely determine the state. In general recall

Definition 1 [8]. Let ρ, ρ ′ be any density operators in Hilbert space H. A set {Ax |x ∈ I }
of self-adjoint operators is informationally complete if T r(ρAx) = T r(ρ ′Ax) for all x ∈ I

implies that ρ = ρ ′.

One can show [3] that there is no ‘complete set of commuting operators’ in this sense.
However, this assumption is hidden in Bloch’s paper [2] (as it is in most papers that deal with
such a set-up). Furthermore, any incomplete measurement would fail to satisfy condition (2)
with which we first introduced Bloch’s paradox.

In the present case, one wishes to investigate the informational completeness of a certain
set associated with

A+ ≡ {Aη(f )|0 � f � 1, f μ-measurable}, (3.1)
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which one takes as the set of measurement operators for the simplest measurements. Using
the linearity of the map f �→ Aη(f ), one takes

A = A+ − A+. (3.2)

It has been shown [11] that, for any phase space representation, the (C*) algebra generated
by A by taking products (or rather the closure of this set) is informationally complete for
η α-admissible and

〈U(g)η, η〉 �= 0 for almost every g ∈ P. (3.3)

Comparing with (2.14), one obtains complete nonlocality of the measurement operators Aη(f );
i.e., two nonzero measurement operators Aη(f ),Aη(h) never commute unless f = ch almost
everywhere, c a constant, whether f and h have spacelike-separated marginal supports or
not. One has a completely non-localized measurement theory. Furthermore [10], the set of
measurement operators, A+, does not contain any projection operators other than 1 = Aη(1)

and 0 = Aη(0). Thus, one may not take (exactly) the projections onto the boxes Xi that
appeared in the formulation of Bloch’s paradox. Note that one may consider Aη(χ�) where
� = Xi marginally, but that is not a projection operator. Having a normalized vector ψ ∈ H
such that 〈ψ,Aη(χ�)ψ〉 � 1 says just that the expected (average) value (

−→
p ,

−→
q ,R) with

respect to ψ is approximately in Xi . Similarly if χ� is replaced by the fuzzy set function f

and |ψ〉〈ψ | is replaced by a general state ρ.
In addition, there is no restriction on the size of the boxes employed, in spite of the

popularity of making sure that the boxes are larger than the Compton wavelength, etc; these
are boxes in the phase space of the average values (

−→
p ,

−→
q ,R

−→
so ), and if the volume of the

boxes shrink below the quantum limit and go to zero, the transition probability goes smoothly
to zero [9].

We remark that the set of conditions (2.2), (2.3) and (3.3) on the wavefunction η is always
realizable. For example, consider the wavefunction for an electron in any of the basic states
in an isolated hydrogen atom! We also note that everything we have said holds when the
Poincaré group is replaced with the Heisenberg group, the Galilei group, the De Sitter groups
or any other locally compact Lie group [9].

4. Summary

In the theory of quantum mechanics on phase space, quantum measurement is described by
a covariant localization operator that is generated by a vector (in the Hilbert space of the
particle) satisfying a certain type of admissibility condition. With an additional condition, the
set of operators generated from the set of localization operators is informationally complete.
Furthermore, this localization operator is optimal among all the potential modes of physical
measurement. Using this form of localization operator and the unitarity of the Lorentz
transformations, Bloch’s paradox does not appear.
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